Counting Real Critical Points of the Distance to Orthogonally Invariant Matrix Sets

نویسندگان

  • Dmitriy Drusvyatskiy
  • Hon-leung Lee
  • Rekha R. Thomas
چکیده

Minimizing the Euclidean distance to a set arises frequently in applications. When the set is algebraic, a measure of complexity of this optimization problem is its number of critical points. In this paper we provide a general framework to compute and count the real smooth critical points of a data matrix on an orthogonally invariant set of matrices. The technique relies on “transfer principles” that allow calculations to be done in the space of singular values of the matrices in the orthogonally invariant set. The calculations often simplify greatly and yield transparent formulas. We illustrate the method on several examples, and compare our results to the recently introduced notion of Euclidean distance degree of an algebraic variety.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Euclidean Distance Degree of Orthogonally Invariant Matrix Varieties

We show that the Euclidean distance degree of a real orthogonally invariant matrix variety equals the Euclidean distance degree of its restriction to diagonal matrices. We illustrate how this result can greatly simplify calculations in concrete circumstances.

متن کامل

On Stochastic Majorization of the Eigenvalues of a Wishart Matrix

In multivariate statistical analysis. orthogonally invariant sets of real positive definite pxp matrices occur as acceptance regions for tests of invariant hypotheses concerning the covariance matrix [ of a multivariate normal distribution. Equivalently. orthogonally invariant acceptance regions can be expressed in terms of the eigenvalues I, (S). .... lp(S) of a random Wishart matrix S Wp(n. [...

متن کامل

A Multi-Criteria Analysis Model under an Interval Type-2 Fuzzy Environment with an Application to Production Project Decision Problems

Using Multi-Criteria Decision-Making (MCDM) to solve complicated decisions often includes uncertainty, which could be tackled by utilizing the fuzzy sets theory. Type-2 fuzzy sets consider more uncertainty than type-1 fuzzy sets. These fuzzy sets provide more degrees of freedom to illustrate the uncertainty and fuzziness in real-world production projects. In this paper, a new multi-criteria ana...

متن کامل

Central limit theorem for linear eigenvalue statistics of orthogonally invariant matrix models

We prove central limit theorem for linear eigenvalue statistics of orthogonally invariant ensembles of randommatrices with one interval limiting spectrum. We consider ensembles with real analytic potentials and test functions with two bounded derivatives.

متن کامل

Perturbation bounds for $g$-inverses with respect to the unitarily invariant norm

Let complex matrices $A$ and $B$ have the same sizes. Using the singular value decomposition, we characterize the $g$-inverse $B^{(1)}$ of $B$ such that the distance between a given $g$-inverse of $A$ and the set of all $g$-inverses of the matrix $B$ reaches minimum under the unitarily invariant norm. With this result, we derive additive and multiplicative perturbation bounds of the nearest per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2015